分类

2025年05月05日成考高起点每日一练《数学(文史)》

成考高起点 2025-05-05作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》5月5日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、若向量a=(x,-2),b=(-2,1),且a//b,则x=()。

答 案:D

2、甲袋内有2个白球3个黑球,乙袋内有3个白球1个黑球,现从两个袋内各摸出1个球,摸出的两个球都是白球的概率是

答 案:C

解 析:由已知条件可知此题属于相互独立同时发生的事件,从甲袋内摸到白球的概率为P(A)=乙袋内摸到白球的概率为,所以现从两袋中各提出一个球,摸出的两个都是白球的概率为

3、曲线y=ax2+x+c在点(0,c)处的切线的倾斜角为()。

答 案:C

4、函数y=sin(x+11)的最大值是()。

答 案:B

解 析:本题主要考查的知识点为三角函数的值域。 因为-1≤sin(wx+q)≤1,所以-1≤sin(x+11)≤1,故y=sin(x+11)的最大值为1。

主观题

1、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.  

答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 当x=5时,y有最大值,所以每亩地最多种25棵

2、若双曲线的两条准线将两个焦点的连线分成三等分,求双曲线的离心率。

答 案:设双曲线的半焦距为c,则双曲线 【考点指要】本题要求根据双曲线的焦距、离心率、准线方程三者之间的关系进行计算,属较容易题,在成人高考中常见.

3、已知lg2=a,lg3=b,求lg0.15关于a,b的表达式。  

答 案:

4、设椭圆的中心是坐标原点,长袖在x轴上,离心率,已知点P(0,3/2)到椭圆上的点的最远距离是,求椭圆的方程。

答 案:

填空题

1、函数y=2x(x+1)在x=2处的切线方程是__________.  

答 案:10x-y-8=0

解 析:由函数y=2x(x+1) 知,y´=(2x2+2x)'=4x+2,则y´|x=2=10.又当x=2时,y=12,知此函数的切线过点(2,12),且斜率为10。则其切线方程为10(x-2)=y-12,即10x-y-8=0. 【考点指要】本题考查利用导数求曲线的切线方程,y=ƒ(x)在点P(x0,y0)处的导数值即为曲线y=ƒ(x)在该点处切线的斜率.

2、log2[log2(log381)]=______。  

答 案:1

解 析:由于log381=log334=4,于是 原式=log2(log24)=log22=1。  

相关文章

网友评论
我要跟贴
    取消